Author: Wani, Shabir H.; Haider, Nadia; Kumar, Hitesh; Singh, N.B.
Title: Plant Plastid Engineering Document date: 2010_11_23
ID: 1h6jz1h5_10
Snippet: Wang et al. [3] believe that transgene stacking in operons and a lack of epigenetic interference allowing stable transgene expression. Added to that, plastid transformation is more environmental friendly than transformation of the nuclear DNA for plant engineering because it eliminates the possibility of toxic transgenic pollen to nontarget insects [67] . Adverse effects of toxic proteins might be minimized by plastid compartmentalization but in .....
Document: Wang et al. [3] believe that transgene stacking in operons and a lack of epigenetic interference allowing stable transgene expression. Added to that, plastid transformation is more environmental friendly than transformation of the nuclear DNA for plant engineering because it eliminates the possibility of toxic transgenic pollen to nontarget insects [67] . Adverse effects of toxic proteins might be minimized by plastid compartmentalization but in case of nuclear transformation, toxic proteins accumulating within the cytosol might result in serious pleiotropic effects. Further, the expression of the transgene in case of plastid transformation is more uniform compared to that of trangenes inserted into the nuclear genome. Although there is a major drawback in the engineering of plastid gene expression, which is the lack of tissue-specific developmentally regulated control mechanisms [3] , the many advantages of plastid engineering stated above attracted researchers to engineer the plastid genome to confer several useful agronomic traits, and hence the number of species whose plastome can be transformed continues to expand [68] .
Search related documents:
Co phrase search for related documents- control mechanism and gene expression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Co phrase search for related documents, hyperlinks ordered by date