Selected article for: "fit model and good fit model"

Author: Schanzer, Dena L.; Garner, Michael J.; Hatchette, Todd F.; Langley, Joanne M.; Aziz, Samina; Tam, Theresa W. S.
Title: Estimating Sensitivity of Laboratory Testing for Influenza in Canada through Modelling
  • Document date: 2009_8_18
  • ID: 06boh550_12
    Snippet: The sensitivity for influenza A testing averaged 33.7% (with model-estimated 95% confidence intervals of 33.3-34.1) for the 1999/2000-2005/06 period. Influenza B testing had a similar estimated sensitivity at 34.7 (95% CI 33.4-36.1). Estimated sensitivities varied somewhat from season to season, generally ranging from 30%-40% (Table 1) , and provincial level estimates, as well, were within a similar range. Stratifying by province or season produc.....
    Document: The sensitivity for influenza A testing averaged 33.7% (with model-estimated 95% confidence intervals of 33.3-34.1) for the 1999/2000-2005/06 period. Influenza B testing had a similar estimated sensitivity at 34.7 (95% CI 33.4-36.1). Estimated sensitivities varied somewhat from season to season, generally ranging from 30%-40% (Table 1) , and provincial level estimates, as well, were within a similar range. Stratifying by province or season produced similar estimates for the sensitivity of influenza A testing: 32% (95% CI 30-34) and 36% (95% CI 33-41) respectively. Estimates of sensitivity based on test results reported to the RVDSS for individual laboratories with sufficient data to fit the model showed significant variation, with estimates of sensitivity ranging from 25-65%. As expected, laboratories using primarily rapid antigen tests had lower estimated sensitivities, and laboratories that used PCR methods had higher sensitivity estimates. However, information on testing procedures is limited primarily to the 2005/06 survey. As well, additional irregularities were noticed in the laboratory data and not all laboratories provided sufficient data to fit the model. Figure 2 illustrates a good model fit where the weekly number of influenza negative tests is well explained by the model covariates, with a few exceptions. Firstly, it is evident that additional specimens were tested during the SARS period, as indicated by the period where the number of weekly influenza negative tests exceeded the expected number, or equivalently, a period of successive positive residuals. Residuals typically capture random variation; hence represent tests that can not be allocated based on the specified model. In addition to the SARS period, testing appears to have been elevated for a number of weeks in January 2000 during the peak of the 1999/2000 A/ Sydney/05/97 (H3N2) season in which respiratory admissions were unusually elevated [26, 27] , and in December 2003, when an elevated risk of paediatric deaths associated with the A/Fujian/411/02 (H3N2) strain [28] was identified in the US. As these periods corresponded to a period of heightened public awareness due to severe influenza outbreaks, parameter estimation was repeated without these data points. Exclusion of these data points did not alter the sensitivity estimate for influenza.

    Search related documents:
    Co phrase search for related documents