Author: Okeke, Malachy I.; Okoli, Arinze S.; Diaz, Diana; Offor, Collins; Oludotun, Taiwo G.; Tryland, Morten; Bøhn, Thomas; Moens, Ugo
Title: Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps? Document date: 2017_10_29
ID: 175igdfk_39
Snippet: A vaccine virus/vector will be dispersed to cells, tissues and organs of the patient (biodistribution) from the initial administration site (e.g., injection site). The virus can be introduced into the environment via body fluids (e.g., saliva, sweat, urine, feces, nasopharyngeal fluids, blood, exudates from skin lesions, breast milk and semen of the vaccinee (shedding). Following shedding, survival of the shed virus/vector outside the host (persi.....
Document: A vaccine virus/vector will be dispersed to cells, tissues and organs of the patient (biodistribution) from the initial administration site (e.g., injection site). The virus can be introduced into the environment via body fluids (e.g., saliva, sweat, urine, feces, nasopharyngeal fluids, blood, exudates from skin lesions, breast milk and semen of the vaccinee (shedding). Following shedding, survival of the shed virus/vector outside the host (persistence) will depend on the virus/vector biological properties and the nature of the environment. Thus, assessment of pathways through which genetically modified and/or transgenes may interact with the ecosystem (other than the vaccine recipient) is critical in ERA. In this Section, the relevance of biodistribution, shedding and persistence of GMVs to ERA is briefly discussed.
Search related documents:
Co phrase search for related documents- administration site and vaccine virus: 1, 2, 3
- administration site and vaccine virus vector: 1
- administration site and virus vector: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date