Selected article for: "control prevention and human history"

Author: Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Faria, Nuno; Bielejec, Filip; Baele, Guy; Russell, Colin A.; Smith, Derek J.; Pybus, Oliver G.; Brockmann, Dirk; Suchard, Marc A.
Title: Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2
  • Document date: 2014_2_20
  • ID: 04q71md3_31
    Snippet: The prevention and control of influenza at the global scale relies critically on our understanding of its mode of geographical dissemination. Here, we demonstrate that such dynamics are most powerfully investigated by combining phylogeographic history with empirical data on the patterns of human movement worldwide. Our analysis strongly suggests that air travel is key to global influenza spread, an intuitive result that has long been predicted by.....
    Document: The prevention and control of influenza at the global scale relies critically on our understanding of its mode of geographical dissemination. Here, we demonstrate that such dynamics are most powerfully investigated by combining phylogeographic history with empirical data on the patterns of human movement worldwide. Our analysis strongly suggests that air travel is key to global influenza spread, an intuitive result that has long been predicted by modeling studies (e.g. [5] ), but has, until now, remained difficult to obtain from empirical data. The dominant predictors of influenza spread will undoubtedly be scale-dependent, as indicated here by the importance of geographic distance as a predictor within more confined geographic areas (Fig. 2) , which may represent forms of human mobility other than air travel, such as workplace commuting [9] . This indicates that our statistical framework could also prove valuable in testing hypotheses at smaller scales, where the underlying spatial processes may be less obvious, provided adequate sequence and empirical movement data are available. One of the limitations of the current heterogeneous sampling of H3N2 sequences worldwide is that geographic partitions need to be adjusted to account for the number of samples per location, which results in regions of widely different areas and population sizes. More representative sampling across the globe, or within a more geographically confined area of interest, will allow for more appropriate geographic partitioning and may facilitate more detailed spatial hypothesis testing based on the associated demographic and mobility measures. In particular, if sequences were sampled appropriately then our inference method could incorporate the rich geographic data that is currently available as global gridded population data sets [34] . In addition, many of the predictors used here can be improved in accuracy and resolution, for example by accounting for seat occupancy and actual origin-destination flows in air traffic passenger fluxes.

    Search related documents:
    Co phrase search for related documents
    • air travel and control prevention: 1, 2, 3, 4, 5, 6, 7, 8, 9
    • air travel and empirical movement: 1, 2