Author: Chowell, Gerardo
Title: Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts Document date: 2017_8_12
ID: 3aa8wgr0_65
Snippet: In the previous section we assumed a Poisson error structure to quantify parameter uncertainty. The Poisson distribution only requires one parameter and is suitable to model count data where the mean of the distribution equals the variance. In situations where the time series data shows overdispersion, we can employ a negative binomial distribution instead. The negative binomial distribution requires two parameters to model the mean and overdispe.....
Document: In the previous section we assumed a Poisson error structure to quantify parameter uncertainty. The Poisson distribution only requires one parameter and is suitable to model count data where the mean of the distribution equals the variance. In situations where the time series data shows overdispersion, we can employ a negative binomial distribution instead. The negative binomial distribution requires two parameters to model the mean and overdispersion in the data. Thus, it is possible to model variance levels in the data that are relatively higher than the mean.
Search related documents:
Co phrase search for related documents- error structure and parameter uncertainty: 1, 2, 3, 4, 5, 6
- error structure and Poisson distribution: 1
- error structure and Poisson error structure: 1, 2, 3, 4, 5, 6, 7, 8, 9
- mean model and negative binomial distribution: 1
- mean model and parameter uncertainty: 1
- mean model and Poisson distribution: 1
- mean model and previous section: 1
- mean model and variance equal: 1
- negative binomial distribution and overdispersion show: 1
- negative binomial distribution and Poisson distribution: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- negative binomial distribution and Poisson error structure: 1
- negative binomial distribution and variance level: 1
- overdispersion show and variance level: 1
- parameter uncertainty and Poisson distribution: 1
- parameter uncertainty and Poisson error structure: 1, 2, 3
- parameter uncertainty quantify and Poisson distribution: 1
- Poisson distribution and variance equal: 1, 2
Co phrase search for related documents, hyperlinks ordered by date